Data Serialization
The BookWorm application implements comprehensive data serialization strategies to ensure consistent data transformation, format handling, and type conversion across all system boundaries.
JSON Serialization
Custom Converters
- DateOnlyJsonConverter - Specialized handling for DateOnly types
- StringTrimmerJsonConverter - Automatic string trimming during deserialization
- Custom Type Converters - Domain-specific data type handling
- Nullable Type Support - Proper null value handling in JSON
Serialization Configuration
- Camel Case Naming - Consistent property naming convention
- Null Value Handling - Configurable null property inclusion/exclusion
- Enum Serialization - String-based enum serialization for readability
- DateTime Formatting - ISO 8601 standard for date/time values
Type Conversion
Primitive Type Handling
- Date/Time Conversion - Support for various date/time formats
- Numeric Conversion - Precision handling for decimal and floating-point types
- Boolean Conversion - String-to-boolean conversion with multiple formats
- GUID Conversion - String representation and validation
Complex Type Conversion
- Entity to DTO Mapping - Domain entity to data transfer object conversion
- Value Object Serialization - Immutable value object handling
- Collection Serialization - List, array, and enumerable type conversion
- Nested Object Handling - Deep object graph serialization
Content Type Support
Media Type Handling
- JSON (application/json) - Primary API communication format
- XML (application/xml) - Legacy system compatibility
- Form Data (application/x-www-form-urlencoded) - HTML form processing
- Multipart (multipart/form-data) - File upload support
Content Negotiation
- Accept Header Processing - Client-driven format selection
- Content-Type Validation - Request content type verification
- Custom Media Types - Domain-specific content type support
- Compression Support - Gzip/Deflate compression handling
Validation Integration
Input Validation
- FluentValidation Integration - Validation during deserialization
- Data Annotation Support - Attribute-based validation rules
- Custom Validators - Domain-specific validation logic
- Conditional Validation - Context-dependent validation rules
Sanitization
- HTML Encoding - XSS prevention through encoding
- SQL Injection Prevention - Input sanitization for database safety
- Path Traversal Protection - File path validation and sanitization
- Script Injection Prevention - JavaScript code sanitization
Error Handling
Serialization Errors
- Malformed JSON Handling - Graceful handling of invalid JSON
- Type Conversion Errors - Clear error messages for type mismatches
- Missing Property Handling - Default values for missing properties
- Circular Reference Detection - Prevention of infinite serialization loops
Deserialization Errors
- Schema Validation - JSON schema compliance checking
- Required Property Validation - Enforcement of required fields
- Format Validation - Date, time, and other format validation
- Range Validation - Numeric range and boundary checking
Performance Optimization
Serialization Performance
- Memory Efficient Streaming - Stream-based serialization for large objects
- Object Pool Utilization - Reuse of serialization objects
- Lazy Loading Support - Deferred property serialization
- Selective Serialization - Include/exclude properties based on context
Caching Strategies
- Serialization Cache - Cache frequently serialized objects
- Schema Caching - Reuse of validation schemas
- Converter Caching - Cache custom converter instances
- Metadata Caching - Type metadata and reflection caching
Security Considerations
Data Protection
- Sensitive Data Masking - Hide sensitive information in logs and responses
- PII Redaction - Automatic redaction of personally identifiable information
- Field-Level Encryption - Encrypt specific sensitive fields
- Token Sanitization - Remove authentication tokens from serialized data
Access Control
- Property-Level Security - Hide properties based on user permissions
- Conditional Serialization - Include/exclude data based on user roles
- Data Classification - Classify and handle data based on sensitivity levels
- Audit Trail Integration - Log data access and modifications
API Compatibility
Versioning Support
- Forward Compatibility - Handle new properties in older API versions
- Backward Compatibility - Support deprecated properties
- Schema Evolution - Manage API schema changes over time
- Migration Support - Data format migration between versions
Client Compatibility
- Multiple Format Support - Support different client requirements
- Legacy Format Handling - Maintain support for older data formats
- Mobile Optimization - Optimized serialization for mobile clients
- Browser Compatibility - Cross-browser serialization support
Best Practices
Serialization Design
- Immutable Objects - Prefer immutable data structures
- Clear Property Names - Use descriptive property names
- Consistent Naming - Follow consistent naming conventions
- Minimal Payloads - Include only necessary data
Error Handling
- Graceful Degradation - Continue processing when possible
- Meaningful Error Messages - Provide clear error descriptions
- Error Context - Include context information in error responses
- Logging Integration - Log serialization errors for debugging
Performance Guidelines
- Minimize Object Allocation - Reduce garbage collection pressure
- Efficient Data Structures - Choose appropriate collection types
- Streaming for Large Data - Use streaming for large datasets
- Profile and Monitor - Regular performance profiling and monitoring